Ecuadorian fungus could speed up the decomposition of plastics in landfills

Aug 2, 2015 | 0 comments

By Amanda Froelich

On an expedition to the Ecuadorian rainforest, Yale University students discovered a new type of fungus which may speed up the decomposition process of discarded plastics in landfills.

Plastic-eating fungus

Plastic-eating fungus

Few think twice about what to do with their disposable water bottle after they’ve drunk its contents, but environmentalists are aware that it is the entire eco-system which has to pay the price for misguided action.

Currently, Americans discard about 33.6 million tons of plastic each year. Only 6.5 percent of it is recycled and 7.7 percent is combusted in waste-to-energy facilities, which create electricity or heat from garbage. As a result, there is a massive amount of non-biodegradable materials being tossed into landfills with a wait of about 1,000 years or so before they decompose. What’s worse, many of these materials may leak pollutants into the soil and water.

But thanks to a group of Yale students who discovered a new type of fungus in the Ecuadorian rainforest, a semi-solution may soon be available to help speed up the decomposition process of plastics sitting in landfills.

Students from Yale’s Department of Molecular Biophysics and Biochemistry discovered a previously unknown type of fungus that has a hearty appetite for polyurethane, a polymer that is used in everything from hard plastics to synthetic fibers.

As shared by Fast Company, the fungus is the first one that is known to survive on polyurethane alone, and it can do so in an anaerobic (oxygen-free) environment, suggesting it could be used at the bottom of landfills.

“Many microbes can do cool tricks, like degrading pollutants,” said Jonathann Russell to the Yale alumni magazine. “But a large reason plastics like polyurethane take so long to break down is that microorganisms don’t typically recognize it as food, therefore it can take centuries for man-made polymers to break down into microscopic granules.”

But the discovery of Pestalotiopsis microspora may change all that.

The Yale students isolated the enzyme that enables the fungus to break down plastic then observed its potential.

“The broad distribution of activity observed and the unprecedented case of anaerobic growth using [polyester polyurethane] as the sole carbon source suggest that endophytes are a promising source of biodiversity from which to screen for metabolic properties useful for bioremediation,” they wrote in a report published in the journal Applied and Environmental Microbiology.

No doubt the first step in reducing environmental pollution is to completely eliminate the production of materials which take thousands of years to biodegrade, and second, to re-use or recycle already produced materials into new form.

Ultimately, however, this finding opens up an entire new area of intrigue as its potential to break down plastics is tested and evaluated.

_____________

Credit: The True Activist, TrueActivist.com

 

CuencaHighLife

Dani News

Google ad

Amazon Eco lodge News

The Cuenca Dispatch

Week of March 24

“They are pressuring me to resign so they can remove me from office,” denounced Verónica Abad, Vice President of the Republic.

Read more

Ecuador Navigates Economic Challenges with IMF Agreement Looming.

Read more

“Since when does thinking differently mean being a traitor?” Pierina Correa questions in reference to the Tourism Law.

Read more

Fund Grace News

Hogar Esperanza News

Property 3br News

Google ad